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Fig. 1. Dancing character. Our method produces realistic hair simulation for an animated dancing character
sequence. We simulate more than two thousand hair strands and achieve faster than real-time performance
(260 frames per second).

This paper introduces a hair simulator optimized for real-time applications, including console and cloud
gaming, avatar live-streaming, and metaverse environments. We view the collisions between strands as a
mechanism to preserve the overall volume of the hair and adopt explicitMaterial PointMethod (MPM) to
resolve the strand-strand collision. For simulating single-strand behavior, a semi-implicit Discrete Elastic
Rods (DER) model is used. We build upon a highly efficient GPU MPM framework recently presented by Fei
et al. [2021b] and propose several schemes to largely improve the performance of building and solving the
semi-implicit DER systems on GPU. We demonstrate the efficiency of our pipeline by a few practical scenes
that achieve up to 260 frames-per-second (FPS) with more than two thousand simulated strands on Nvidia
GeForce RTX 3080.
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Fig. 2. Method flowchart. At each time step, we start with updating the status of collision objects. In the
DER stage, we first apply blended rigid transformation if necessary, and then compute the velocities of the
pinned particles before addressing the linear systems. In the MPM stage, multiple MPM cycles are conducted
to adapt a smaller timestep Δ𝑡

𝑚 .
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1 INTRODUCTION
The movie and animation industry has been iterating on techniques for creating realistic hair
simulations for generations, resulting in increasingly sophisticated approaches. Unfortunately, these
techniques are not easily transferable to real-time applications due to the significant computational
burden, particularly related to collision detection and resolution.
We have observed that detailed collision resolution is not necessary when simulating hair

dynamics in real-time. Instead, we consider collisions as a way of preserving volume, allowing us
to use continuum methods for improved efficiency. Previous approaches to hair simulation, such as
smoothed particle hydrodynamics (SPH) and fluid implicit particles (FLIP), have also used volume
preservation techniques to model hair dynamics [Hadap and Magnenat-Thalmann 2001; McAdams
et al. 2009]. However, we have chosen to adopt the Material Point Method (MPM), which provides
the flexibility to switch between fluid and sand models. In addition to volume preservation, the
sand model also enables us to reproduce friction between hair strands, which can be desirable in
certain scenes.
Moreover, hair simulation involves a physically stiff system due to the material properties of

the hair strands. To address this, we have implemented a separate collision handling stage, using
the MPM method, which allows us to isolate the stiff system and solve it with a semi-implicit
integration method for improved robustness. Instead of solving a large linearized system with
collisions taken into consideration, we resolve each strand independently. This means that we can
solve smaller systems in parallel, which is a perfect fit for modern GPU architecture.

In this work, we utilize the GPU framework presented in [Fei et al. 2021b] for the MPM stage, as
it is specifically designed for real-time applications. Moreover, we propose GPU optimizations for
constructing and solving the linear systems in the DER integrator. The resulting pipeline is highly
efficient, achieving faster-than-real-time performance on modern GPUs. In addition to efficiency,
stability is crucial in real-time scenarios. To ensure excessive stability and robustness, we devise a
rigid motion blending strategy and a stability test. We have also developed a plug-in for Unreal
Engine, demonstrating that our simulator can produce better visual results at interactive rates
compared to currently available commercial tools.

2 RELATEDWORK
Achieving a balance between physical accuracy and computational efficiency is a significant
challenge when it comes to real-time hair simulation. In this section, we will examine various
methods and their respective trade-offs.
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Hair model. Mass-spring models are frequently employed in hair simulation [Jiang et al. 2020;
Petrovic et al. 2005; Rosenblum et al. 1991; Selle et al. 2008]. However, these models often fail to
accurately capture complex hair geometries due to the absence of angular states. While additional
springs can be added to simulate bending and torsional behavior, doing so complicates the system.
The Articulated-Body Method has also been utilized in hair simulation [Chang et al. 2002; Hadap
2006], but only for simple hair shapes [Ward et al. 2007]. In contrast, the use of elastic rods to
simulate hair strands [Bergou et al. 2008; Derouet-Jourdan et al. 2013; Kaufman et al. 2014; Pai
2002] has become increasingly popular due to its ability to accurately capture a wide range of hair
configurations and produce realistic simulation results.

Material point method. MPM is a hybrid Lagrangian/Eulerian method first developed by [Sulsky
et al. 1994, 1995]. Although initially formulated for computational fluid dynamics by [Brackbill
and Ruppel 1986], MPM has proven to be a versatile discretization choice for a range of materials,
including snow [Stomakhin et al. 2013], sand [Klár et al. 2016], foam [Ram et al. 2015; Yue et al.
2015], cloth [Fei et al. 2018; Jiang et al. 2017], and solid-fluid mixtures [Pradhana et al. 2017].
The Drucker-Prager sand model is widely used to simulate friction between particles. However,
traditional MPM can introduce artificial damping, making it difficult to separate particles. Fei et al.
[2021a] overcame this issue by introducing novel integrators. Despite efforts by researchers to boost
MPM performance by designing optimized GPU implementations [Fei et al. 2021b; Gao et al. 2018b;
Hu et al. 2019; Wang et al. 2020], adopting MPM for real-time applications remains a challenge.

MPM Background Grid
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Vertex 1 (Particle 1) 

Vertex 2 (Particle 2) 

Vertex 3 (Particle 3) 
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Fig. 3. Hair Model. We adopted isotropic,
naturally straight rods as the hair model,
and each strand has 4𝑛 − 1 degrees of free-
dom (𝑛 is the number of vertices on the
strand). It is worth noting that the DER ver-
tices are identical with the MPM Particles.

Contact. Simulating frictional contact is crucial for
achieving realism in hair simulation. However, due to
the large number of contact points involved, many con-
tact algorithms become too computationally expensive
for real-time applications [Daviet 2020; Ly et al. 2020]. Us-
ing continuum approaches with background grids, such
as hybrid Lagrangian/Eulerian methods [Fei et al. 2019;
Han et al. 2019; Jiang et al. 2017; McAdams et al. 2009],
can be an attractive option since contact resolution is
built-in. The use of sand model also allows us to simulate
friction between strands without introducing expensive
computation. In particular, [Han et al. 2019] work seems
similar to ours; however, they use the MPM stage as a pre-
processing step of the traditional Lagrangian collision
resolution step. MPM helps prevent most of the pene-
trations. Our algorithm differs from the hair algorithm
in [Han et al. 2019], in the sense that we adopt various
strategies to accelerate the GPU implementation of DER
and employ SFLIP to achieve better particle separation
property in our MPM stage.

3 METHOD
Hair Configuration. Our hair simulator combines two different materials: elastic strands and

sand/fluid particles. It can be viewed as a prediction-correction model, with the DER stage predicting
the movements of each strand independently, and the MPM stage correcting the behavior by taking
collisions into account. The vertices of the DER strands and the MPM particles share the same set of
three-dimensional points, which allows for seamless coupling between the materials. In this work,
we will use the terms vertex and particle interchangeably, even though vertex is more commonly
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used in the DER stage, while particle is predominantly used in the MPM stage. The simulation flow
is illustrated in Fig. 2.

We model our hair using isotropic poly-line rods, as shown in Fig. 3. Each strand has a rest shape,
and each vertex has three degrees of freedom for translation (position 𝒙), and each segment has
one degree of freedom for rotation (rotation angle 𝜃 ). The model is based on three types of energies:
stretching energy, defined at segments, and bending and twisting energies, defined at vertices. The
formulas for these energies are summarized as follows:

𝐸 (Γ) = 𝐸𝑠 (Γ) + 𝐸𝑏 (Γ) + 𝐸𝑡 (Γ)

=

𝑛−1∑︁
𝑖=1

𝜖𝑖𝑠 +
𝑛∑︁
𝑖=1

𝜖𝑏,𝑖 +
𝑛∑︁
𝑖=1

𝜖𝑡,𝑖 ,

𝜖𝑖𝑠 =
𝜋𝑟2𝑌

2𝑙𝑖
(𝑙𝑖 − 𝑙𝑖 )2

,

𝜖𝑏,𝑖 =
𝜋𝑟4𝑌

16𝑙𝑖
∥𝜿𝑖 − 𝜿𝑖 ∥2,

𝜖𝑡,𝑖 =
𝜋𝑟4𝐺

8𝑙𝑖
(𝜇𝑖 − 𝜇𝑖 )2 .

(1)

Symbol Physical quantity Dimension
𝜖𝑖𝑠 Stretching energy at edge 𝑖 1
𝜖𝑏,𝑖 Bending energy at vertex 𝑖 1
𝜖𝑡,𝑖 Twisting energy at vertex 𝑖 1
r Radius of the strand 1
Y Young’s modulus 1
G Shear modulus 1
𝑙𝑖 Length of edge 𝑖 1
𝑙𝑖 Initial length of edge 𝑖 1
𝜿𝑖 Material curvature of vertex 𝑖 4 × 1
𝜿𝑖 Initial material curvature of vertex 𝑖 4 × 1
𝜇𝑖 twist of vertex 𝑖 1
𝜇𝑖 Initial twist of vertex 𝑖 1

For further details, please refer to [Bergou et al. 2010, 2008].

3.1 Implementation of discrete elastic rods on GPU
We use the DER model developed by [Bergou et al. 2010, 2008] and a semi-implicit backward Euler
integrator [Baraff and Witkin 1998] to simulate individual hair strands. At each time step, we solve
the linear system

(𝑴 + ℎ2𝑯 )𝒗 = 𝑴𝒗0 + Δ𝑡𝒇 (2)
where 𝒗0 is the velocity state vector at the current time step, 𝑴 is the mass matrix, 𝒇 and 𝑯 are the
force vector and the energy Hessian derived from Eq. 1, Δ𝑡 is the time step size. This is a linear
system of the form 𝑨𝒙 = 𝒃 where we solve for the unknown velocity state 𝒗 at the next time step.
The semi-implicit backward Euler method can be expressed as an optimization problem [Martin
et al. 2011] that involves minimizing a sum of squares [Bergou et al. 2010]. Computing the full
energy Hessian is rather expensive due to the second derivatives of the material curvature 𝜿𝑖 . To
avoid the cost of computing the full Hessian, we only used the first derivatives. This approach
ensures that the system matrix 𝑨 is symmetric positive definite and that the search direction is
a decent direction. For detailed derivation of the derivatives, please refer to the supplemental
document in [Fei et al. 2019].
Traditional solvers for the DER model require explicit handling of collisions between different

strands as well as between segments within the same strand, as noted by [Kaufman et al. 2014].
However, in our framework, all such interactions are deferred to the MPM stage, and each strand
can be independently handled. Instead of constructing a large linear system covering all strands,
we solve many small linear systems in parallel. This approach allows for independent and efficient
simulation of each strand, which is useful when simulating a large number of strands.

3.1.1 Construction of the linear system. For each strand, we construct the sparse matrix 𝑨 and the
right hand side 𝒃 , which are then stored in global memory. In our implementation, each CUDA
thread calculates the quantities related to either one vertex (for bending and twisting) or one
segment (for stretching). Since hair strands are modeled as naturally straight rods, the forces on
vertices and the torques on edges are determined by up to three contributions[Bergou et al. 2008].
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In other words, each vertex only interacts with its closest and second-closest neighboring vertices
as shown in Fig. 4. The energy Hessian matrix of this system is a sparse banded diagonal matrix
with a bandwidth of 10. Since self-collision in the same strand is temporarily ignored, there are no
other non-zero entries outside the band in these small linear systems.

Eb,iEb,i–1 Eb,i+1

fb,i

xixi–1 xi+1 xi+2xi–2

Fig. 4. Computation of Bending Force.
To compute the bending force for vertex 𝑖 ,
we need the positions of vertices from 𝑖 − 2
to 𝑖+2. This access patternmakes the shuffle
intrinsic operations preferable.

The system matrix 𝑨 is split into two parts: 𝑨𝑑 , the
diagonal part, and𝑨𝑙 , the lower triangular part. As shown
in Fig. 5(a), 𝑨𝑙 is stored in the Array-of-Structure-of-
Array (AoSoA) [Fei et al. 2021b; Wang et al. 2020] storage
format with a column-major order, we will explain the
reason in Sec. 3.1.2.

Access neighboring vertices/edges. A straightforward
way to read quantities on neighboring vertices or edges
is to use shared memory as a scratchpad, which demands
three operations in total – one writing operation, one
CUDA block level synchronization and finally one read-
ing operation. However, we observe that in DER model
one vertex would only need information from either its
preceding or its succeeding vertices (e.g., for computing the energies defined at itself). For instance,
the formula for calculating bending force for vertex 𝑖 is presented in Eq. 3 (C𝑘

𝑖 stands for the force
exerted on vertex 𝑖 by vertex 𝑘), where only the neighboring vertices 𝑖−1, 𝑖 , and 𝑖 +1 are involved in
the computation. As a result, the data exchange would only happen between neighboring threads.
Thus we propose to use shuffle intrinsic operations for exchanging data as such operations can
directly access other threads’ registers in the same warp and achieve better efficiency.

𝒇𝑏,𝑖 = − 𝜕𝐸𝑏 (Γ)
𝜕𝒙𝑖

= −
∑︁

𝑘=𝑖−1,𝑖,𝑖+1

𝜕𝜖𝑏,𝑘

𝜕𝒙𝑖
= −

∑︁
𝑘=𝑖−1,𝑖,𝑖+1

C𝑘
𝑖 (3)

Al of strand 0 Al of strand 1 Al of strand 2 . . . Al of strand i . . .

column 0 of Al . . .column 1 of Al column 2 of Al

Al3,2 Al4,2 Al5,2 Al6,2 Al7,2 Al8,2 Al9,2 Al10,2 Al11,2 Al12,2

(a)
Ad of strand 0 Ad of strand 1 Ad of strand 2 . . . Ad of strand i . . .

Ad0 Ad1 Ad2 Ad3 Ad4 Ad5 Ad6 Ad7 Ad8 Ad10 Ad11Ad9 Adn...

(b)
Fig. 5. (a) Storage for 𝑨𝑙 and 𝑳. Banded matrices 𝑨𝑙

and 𝑳 are stored in a column-major AOSOA format,
facilitating column-major global memory access. (b)
Storage for𝑨𝑑 and 𝒃.𝑨𝑑 and 𝒃 are stored in a regular
SOA format.

Increase GPU occupancy. Compared with of-
fline scenarios, we simulate a fewer number
of hair strands (e.g., 500 - 2000 strands) for
real-time applications. Consequently, we need
a strategy to better fill up the GPU streaming
multiprocessors to achieve higher occupancy
and reduce tail effect. Instead of feeding every
single strand to one CUDA block, we divide
strands into groups of 32 vertices and assign
each group to a CUDA block of 32 threads (or
a warp). For example, a strand with 50 vertices
will be handled by two CUDA blocks (or two
warps) in parallel.

Avoid thread divergence. As shown in Fig. 6,
a straightforward way to divide vertices of a
strand is to group them in a disjoint fashion. Due to the dependence between neighboring vertices,
however, this introduces heavy thread divergence. In order to calculate quantities like material
curvature or energy, boundary vertices (the first and last vertices) of each group need to access the
vertices of neighboring groups (e.g., in Fig. 6, vertex 32 𝑗 + 31 needs to read information from and
write contributions to vertex 32 𝑗 + 32), which demands a large amount of branching.
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Group j

E32j–1 …E32j+1 E32j+30E32j E32j+31 E32j+32

f32j–1 …f32j+1 f32j+30f32j f32j+31 f32j+32

E32j–2 E32j+33

f32j–2 f32j+33

Group j–1 Group j+1

Fig. 6. Disjoint groups. Grouping the vertices without overlap seems plausible. However, additional opera-
tions on boundary vertices are required, introducing heavy thread divergence.

E30j+1E30j … E30j+30

f30j+1f30j … f30j+30

E30j+31E30j+30 … E30j+60

f30j+31f30j+30 … f30j+60

Group j

E30j+31

f30j+31 f30j+61

E30j+61

Group j+1

Fig. 7. Overlapping groups. The two overlapped vertices, namely vertex 30 𝑗 + 30 and vertex 30 𝑗 + 31, are
shared by two adjacent groups and processed by both of them. The incomplete forces of these vertices,
calculated by the neighboring groups, complement each other and are added through atomic operations.

𝒇𝑏,𝑖 =



− ∑
𝑘=𝑖+1

C𝑘
𝑖

𝑖 = 30 𝑗

− ∑
𝑘=𝑖,𝑖+1

C𝑘
𝑖

𝑖 = 30 𝑗 + 1

− ∑
𝑘=𝑖−1,𝑖

C𝑘
𝑖

𝑖 = 30 𝑗 + 30

− ∑
𝑘=𝑖−1

C𝑘
𝑖

𝑖 = 30 𝑗 + 31

− ∑
𝑘=𝑖−1,𝑖,𝑖+1

C𝑘
𝑖

otherwise

(4)

We propose overlapped grouping to ameliorate this issue
as shown in Fig. 7. Under this division scheme, the first and
second vertices of a group are the same as the last and the sec-
ond last vertices of the previous group. When calculating the
bending or twisting energies for boundary vertices (the first
and the last vertices) of a group, we don’t read information
from the vertices of neighboring groups to get the correct ener-
gies. Instead, we do nothing but just leave the energies wrong.
Then when calculating forces (or components of Hessian) for
overlapped vertices (boundary vertices plus the second and
the second last vertices), we set contributions from boundary vertices to zero (line 10, Alg. 1).
Though each overlapped vertex gets incomplete contributions during the process of a group, it gets
complete contributions after being processed by both groups, which leads to a correct final result.
That is, the force contributions from neighboring groups are complementary. Potential writing
conflicts are resolved with atomic operations. Eq. 4 gives the bending force breakdown for vertices
in group 𝑗 . This way, additional read and write operations on boundary threads are eliminated,
and setting zero is trivial for boundary threads and won’t introduce heavy thread divergence. We
follow a similar way to process stretching force and Hessian.

Coalesced writing. After each thread has finished its computing, they don’t write the results
immediately to global memory as these quantities are not consecutive in memory (see Fig. 5 and
line 14, Alg. 1). Instead, we allocate a chunk of shared memory as a scratchpad to store these
quantities temporarily. Then all threads in a CUDA warp will be used to write adjacent values of
these quantities to global memory to guarantee the final writing is coalesced. Notice that DER is a
computationally expensive model and each thread consumes many resources such as registers and

6



Towards Realtime: A Hybrid Physics-based Method for Hair Animation on GPUSCA’23, Aug 04–06, 2023, Los Angeles, CA

shared memory, which is another reason that we use CUDA blocks consisting of only one CUDA
warp.

ALGORITHM1: Construction of bending force
input :pos, 𝑔𝑟𝑜𝑢𝑝_𝑖𝑑 , 𝑙𝑎𝑛𝑒_𝑖𝑑
output :𝒃

1 __shared__ float f[96]
2 𝒙𝑖 = pos[𝑔𝑟𝑜𝑢𝑝_𝑖𝑑, 𝑙𝑎𝑛𝑒_𝑖𝑑 ] // Index conversion is omitted

3 𝒙𝑖+1 = __𝑠ℎ𝑓 𝑙_𝑑𝑜𝑤𝑛 (𝒙𝑖 ) // 𝒙𝑖+1 is wrong for lane 31.

4 𝒙𝑖−1 = __𝑠ℎ𝑓 𝑙_𝑢𝑝 (𝒙𝑖 ) // 𝒙𝑖−1 is wrong for lane 0.

5 𝐸 = ComputeBendingEnergy(𝒙𝑖−1, 𝒙𝑖 , 𝒙𝑖+1 )
6 C𝑖−1 = ComputeBendingContribution(𝐸, 𝒙𝑖−1 )
7 C𝑖 = ComputeBendingContribution(𝐸, 𝒙𝑖 )
8 C𝑖+1 = ComputeBendingContribution(𝐸, 𝒙𝑖+1 )
9 if 𝑙𝑎𝑛𝑒_𝑖𝑑 == 0 Or 𝑙𝑎𝑛𝑒_𝑖𝑑 == 31 then
10 C𝑖−1 = C𝑖 = C𝑖+1 = 0
11 end
12 𝒇𝑖 = __𝑠ℎ𝑓 𝑙_𝑢𝑝 (C𝑖+1 ) + C𝑖 + __𝑠ℎ𝑓 𝑙_𝑑𝑜𝑤𝑛 (C𝑖−1 )
13 for 𝑘 = 0 to 2 do
14 f[𝑙𝑎𝑛𝑒_𝑖𝑑 ∗ 3 + 𝑘 ] = 𝒇𝑖 [𝑘 ]
15 end
16 __𝑠𝑦𝑛𝑐𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ( )
17 𝑔𝑟𝑜𝑢𝑝_𝑜 𝑓 𝑓 𝑠𝑒𝑡 = ComputeOffset(𝑔𝑟𝑜𝑢𝑝_𝑖𝑑 )
18 𝒃 [𝑔𝑟𝑜𝑢𝑝_𝑜 𝑓 𝑓 𝑠𝑒𝑡 + 𝑙𝑎𝑛𝑒_𝑖𝑑 ]+ = f[𝑙𝑎𝑛𝑒_𝑖𝑑 ]

Alg. 1 outlines a pseudo-code demonstrating
the construction of bending force. Although the
construction of other parts of a linear system
may vary slightly with the mathematical defi-
nitions, the key challenges can be addressed in
similar ways. Notably, we consolidated the con-
struction of all components of a linear system
into a single CUDA kernel rather than several
small kernels, to reduce the overhead of kernel
launch.

3.1.2 Solution of the linear system. We first
describe the standard way of solving 𝒙 from
𝑨𝒙 = 𝒃 and then show how we analyze and
implement the solver on GPU to achieve better
efficiency.

ALGORITHM 2: LDL solver
input :𝑨, 𝒃
output :𝑳, 𝑫 , 𝒚 , 𝒙
/* Step 0: LDL decomposition */

1 for 𝑗 = 0 to 𝑛 − 1 do
2 𝐷 𝑗 = 𝐴𝑗 𝑗 −

∑𝑗−1
𝑘=0 𝐿

2
𝑗𝑘
𝐷𝑘

3 for 𝑖 = 𝑗 + 1 to 𝑛 − 1 do
4 𝐿𝑖 𝑗 =

1
𝐷𝑗

(𝐴𝑖 𝑗 −
∑𝑗−1
𝑘=0 𝐿𝑖𝑘𝐿𝑗𝑘𝐷𝑘 )

5 end
6 end

/* Step 1: forward substitution */

7 for 𝑗 = 0 to 𝑛 − 1 do
8 𝑦 𝑗 =

1
𝐷𝑗

(𝑏 𝑗 −
∑𝑗−1
𝑘=0 𝑦𝑘𝐿𝑗𝑘𝐷𝑘 )

9 end
/* Step 2: back substitution */

10 for 𝑗 = 𝑛 − 1 to 0 do
11 𝑥 𝑗 = 𝑦 𝑗 −

∑𝑛−1
𝑘=𝑗+1 𝐿𝑘 𝑗𝑥𝑘

12 end

Standard LDL solver. The algorithm is out-
lined in Alg. 2. Given that the system matrix
𝑨 is symmetric positive definite, we can ap-
ply an LDL decomposition: 𝑨 = 𝑳𝑫𝑳𝑇 , where
𝑳 is a lower triangular matrix with all diago-
nal entries being 1, and 𝑫 is a diagonal matrix.
The original Cholesky decomposition is less
preferred as it requires expensive square root
operations. We first compute a temporary vec-
tor𝒚 using forward substitution (𝑳𝑫𝒚 = 𝒃) and
then we solve for the final result 𝒙 using back
substitution (𝑳𝑇𝒙 = 𝒚).

GPU implementation. We use one CUDA block to solve the linear system of each strand, and
each CUDA block consists of one thread warp. Unlike the construction of the linear system, here
we use all threads in the block to process one column of the system at one time. The pseudo-code
of the CUDA kernel is presented in Alg. 3. The special structure of 𝑨 enables certain optimization
strategies, which we will elaborate on in this section.
• Though not stated explicitly in Alg. 3, all 2-D indices (e.g., [ 𝑗, 𝑘] on line 5) will be converted into
a proper 1-D index.

• Similar to the construction of the linear system, shuffle instrinsics can also be utilized here to
perform warp-level reductions, thereby enhancing the efficiency of summations on line 2, line 8,
and line 11.

• In Alg. 2, we observe that 𝐷 𝑗 on line 8 is computed on line 2 and 𝑦𝑘 , 𝐿 𝑗𝑘 , 𝐷𝑘 are computed from
previous for-loops. Thus we can merge the for-loops on line 1 and line 7 into one for-loop. As a
result, 𝐷 𝑗 doesn’t need to be stored in global memory. Note that in the first loop of Alg. 3, 10
threads are used to compute 𝐷 𝑗 and 𝑦 𝑗 , only the first thread will be responsible for writing the
results. Then each thread will be responsible for computing and writing 𝐿𝑖 𝑗 on its own, so here
we cannot use warp-level reduction to handle the summation on line 4 of Alg. 2.
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• As discussed in Sec. 3.1.1, 𝑨𝑙 is stored in a column-major AOSOA format (see Fig. 5(a)), so the
reading of 𝐴𝑖 𝑗 (line 4, Alg. 2; line 12, Alg. 3) can be coalesced. Note that we reuse 𝑨𝑙 to store the
matrix 𝑳, so similiarly, the writing of 𝐿𝑖 𝑗 (line 4, Alg. 2; line 13, Alg. 3) and the reading of 𝐿𝑘 𝑗
(line 11, Alg. 2; line 22, Alg. 3) are also coalesced.

• A side-effect caused by column-major storage is that the reading of 𝐿𝑖𝑘 and 𝐿 𝑗𝑘 (line 4 and line 8,
Alg. 2) becomes uncoalesced. To ameliorate this problem, we use three circular buffers on shared
memory to record 𝐿 𝑗𝑘𝐷𝑘 , 𝐷𝑘 , and 𝑦𝑘 for the recently processed 10 columns. This is because, for
any column, only the closest 10 columns to its left are used to compute the elements on that
column. Every time we start processing one column, we first read cached values from the circular
buffers, and update the circular buffers after the computing of the column is finished. As a result,
with the use of circular buffers, the only uncoalesced global memory access left is the reading of
𝐿𝑖𝑘 (line 12, Alg. 3).

• Finally, as 𝑨 is a banded matrix with a bandwidth of 10, only 10 threads are needed to solve one
hair strand, making it possible to process 3 hair strands in parallel with a CUDA warp. While the
details are omitted in Alg. 3 for the sake of conciseness, this can be done by slightly adjusting the
memory allocation and index computation involved in Alg. 3 and can further reduce the overall
execution time.

ALGORITHM 3: GPU Implementation of LDL
solver
input :𝑨𝑙 , 𝑨𝑑 , 𝒃 , 𝑙𝑎𝑛𝑒_𝑖𝑑
output :𝒃
/* Circular buffers for 𝐿𝑗𝑘𝐷𝑘 , 𝐷𝑘 , and 𝑦𝑘 */

1 __shared__ float cb_LD[100], cb_D[10], cb_y[10]
/* Step 0: LDL decomposition and forward substitution */

2 for 𝑗 = 0 to 𝑛 − 1 do
3 if 𝑙𝑎𝑛𝑒_𝑖𝑑 < 10 then

/* Compute 𝐷 𝑗 and 𝑦 𝑗 */

4 𝑘 = 𝑗 − 𝑙𝑎𝑛𝑒_𝑖𝑑 − 1
5 𝐿𝑗𝑘𝐷𝑘 = cb_LD[ 𝑗, 𝑘 ] // Index conversion is

omitted.

6 𝐷𝑘 = cb_D[ 𝑗, 𝑘 ]
7 𝑦𝑘 = cb_y[ 𝑗, 𝑘 ]
8 𝐷 𝑗 = 𝑨𝑑 [ 𝑗 ] − WarpReduction( (𝐿𝑗𝑘𝐷𝑘 )2/𝐷𝑘 )
9 𝑦 𝑗 =

1
𝐷𝑗

(𝒃 [ 𝑗 ] − WarpReduction(𝑦𝑘𝐿𝑗𝑘𝐷𝑘 ) )
10 𝒃 [ 𝑗 ] = 𝑦 𝑗 // 𝒃 is reused to store 𝒚.

/* Compute 𝐿𝑖 𝑗 */

11 𝑖 = 𝑗 + 𝑙𝑎𝑛𝑒_𝑖𝑑 + 1
12 𝐿𝑖 𝑗 =

1
𝐷𝑗

(𝑨𝑙 [𝑖, 𝑗 ] −
∑𝑗−1
𝑘=𝑗−10 𝑨𝑙 [𝑖, 𝑘 ]𝐿𝑗𝑘𝐷𝑘 )

13 𝑨𝑙 [𝑖, 𝑗 ] = 𝐿𝑖 𝑗 // 𝑨𝑙 is reused to store 𝑳.
/* Update circular buffers */

14 cb_LD[i, j] = L𝑖 𝑗 · 𝐷 𝑗

15 cb_D[j, j] = 𝐷 𝑗

16 cb_y[j, j] = 𝑦 𝑗
17 end
18 end

/* Step 1: back substitution */

19 for 𝑗 = 𝑛 − 1 to 0 do
20 if 𝑙𝑎𝑛𝑒_𝑖𝑑 < 10 then
21 𝑘 = 𝑗 + 𝑙𝑎𝑛𝑒_𝑖𝑑 + 1
22 𝐿𝑘 𝑗 = 𝑨𝑙 [𝑘, 𝑗 ]
23 𝑥𝑘 = 𝒃 [𝑘 ]
24 end
25 𝑦 𝑗 = 𝒃 [ 𝑗 ]
26 𝑥 𝑗 = 𝑦 𝑗 − WarpReduction(𝐿𝑘 𝑗𝑥𝑘 )
27 𝒃 [ 𝑗 ] = 𝑥 𝑗 // 𝒃 is reused to store 𝒙.
28 end

In conclusion, we have implemented sev-
eral optimization strategies to reduce the mem-
ory access latency and improve the parallelism
of our algorithm. A benchmark for our LDL
solver is presented in Sec. 5. With this opti-
mized GPU solver, the performance of solving
the linear system can be substantially boosted
and becomes comparable to the MPM particle-
to-grid operation. In Sec. 3.3, we propose a sub-
stepping scheme to further reduce the cost.

3.1.3 Boundary condition in DER.

Analytic capsule SDF. Given our focus on
real-time applications, we use analytic capsule-
shaped SDFs (signed distance fields) to repre-
sent the head and body of a character, which
serve as boundary conditions in both the DER
and MPM stages. While more accurate alter-
natives such as meshes or level-sets exist, we
prioritize the efficiency of the simulation to
achieve real-time performance.

Pinned particles. To account for pinned parti-
cles at the root of each strand, we must modify
their velocities based on the movement of the
head capsule as they are constraints rather than
degrees of freedom. To accomplish this, we use
the head capsule’s translation and rotation as
the target position for the pinned particles and
calculate their corresponding target velocities. We then blend the pinned particles’ original veloci-
ties from the previous time step with the target velocities to obtain the final velocities, which are
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used to compute the right-hand side of the linear system. It is important to note that, like in MPM
[Klár et al. 2016], we do not alter the positions of the pinned particles.

Bangs preservation. To preserve the initial style of certain strands and prevent tangling in specific
areas, such as the shorter strands in front of the forehead which are carefully designed by artists,
we propose selectively increasing the number of pinned particles. This means we can choose to pin
more particles for strands on the forehead compared to other strands, which better maintains the
hairstyle.

3.2 Material point method
One efficient way to handle collisions in hair simulation is by using continuum methods. McAdams
et al. [2009] proposed the use of an incompressible fluid solver called FLIP to preserve hair volume.
Another approach is to use Material Point Method (MPM), which has been successfully used in
recent works such as [Fei et al. 2021a; Han et al. 2019; Jiang et al. 2017] for collision resolution in
hair simulation.
Collisions are handled through two aspects. Firstly, particles that are about to collide will have

velocities with opposite directions. During the particle-to-grid (P2G) process, these velocities are
averaged at grid nodes, reducing the tendency for collision. Secondly, the reduced kinematic energy
is converted to potential energy stored within each particle, typically described using a constitutive
model. In the subsequent time step, this potential energy generates forces that further prevent
collisions.

3.2.1 Consititutive models. To ensure volume preservation, we can use the weakly compressible
model of MPM proposed by Pradhana et al. [2017], which simulates fluid similar to FLIP. However,
FLIP methods lack the ability to model friction between hair strands, a key feature in hair simulation
that can have a significant impact on strand-strand interactions as discussed in [Daviet et al. 2011].
On the other hand, MPM can easily incorporate friction using the Drucker-Prager sand model [Klár
et al. 2016; Yue et al. 2018]. Figure 11 shows a comparison of the visual differences between hair
simulated using the fluid model and hair simulated using the sand model.

3.2.2 Integrator. We have chosen to use the newly introduced explicit MPM pipeline on a single
GPU, as presented in [Fei et al. 2021b]. This optimized approach outperforms earlier methods [Gao
et al. 2018b; Hu et al. 2019; Wang et al. 2020] and is capable of providing superior performance. To
further enhance our simulation, we utilize the Separable FLIP integrator (SFLIP) method [Fei et al.
2021a], which efficiently reduces numerical viscosity in particle-grid hybrid techniques.

3.2.3 Boundary condition in MPM. We adopt a traditional approach for collision handling in MPM,
as described in [Jiang et al. 2016]. However, in our case, the boundary conditions are only enforced
at grid nodes. Specifically, we first check whether the new position of each grid node intersects
with the SDFs. If there is an intersection, we use an impulse method to resolve the collision. For the
pinned particles, no special treatment is required during the particle-to-grid transfers. However,
during the grid-to-particle step, we compute the new positions from the velocities prescribed in
Sec. 3.1.3. The pinned particles’ velocities derived in the MPM stage can be updated in the standard
MPM way since they will be discarded and modified in the DER stage of the next time step. It
should be noted that the gravity force must not be applied to pinned particles.

3.3 Time step
Fixed Time Step. We have chosen to use fixed time steps for our simulations. Specifically, all of

our simulations run at 60 frames-per-second, with each frame consisting of 6 steps. This gives us a
fixed time step of 1

360 seconds for each step.
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DER. Due to the semi-implicit integration used in DER, relatively large time steps can be taken.
Therefore, the fixed time step used in our simulations is usually sufficient.

MPM. While MPM typically requires small time steps due to its use of explicit time integration,
we can use larger time steps in our simulation because we are not modeling real sand or fluid
dynamics. Specifically, we can use relatively small values for the Young’s modulus in both models,
as indicated in Table 2. To ensure stability, we use a smaller FLIP ratio in SFLIP than what is typically
used in MPM simulations, and we do not include the affine augmentation.

Sub-stepping. While our optimizations on the DER part can substantially reduce the cost of
solving the linear system, we propose a simpler version of sub-stepping scheme from [Gao et al.
2018a] for better efficiency. Since DER uses semi-implicit integration, it can remain stable at a larger
time step compared to the fixed time step MPM mentioned earlier, which is determined by the
explicit MPM. In other words, DER can execute once per 𝑁 fixed time steps where 𝑁 ranges from 1
to 3 in our demos. We record the momentum changes of all particles in the DER stage. Then, in each
MPM sub-step, the particles can get 1

𝑁
of the stored momentum changes. The boundary conditions

need to be carefully adjusted in sub-stepping. Specifically, semi-implicit DER requires the boundary
condition at time 𝑡 + 𝑁Δ𝑡 while multiple explicit MPM steps take the boundary conditions at time
𝑡, 𝑡 + Δ𝑡, ..., 𝑡 + (𝑁 − 1)Δ𝑡 correspondingly.

4 STABILITY CONSIDERATIONS
Ensuring stability is a critical consideration when adopting new algorithms in real-time applications,
as we don’t want to see the character’s hair or clothes blowing up during gameplay or live-streaming.
To deliver a robust and efficient framework, we use several schemes to ensure stability.

4.1 Clamping

xi–1

xi+1 
xi

ti–1

ti

Fig. 8. Overlapped neighboring segments. Numer-
ical problems arise when two adjacent segments be-
come too close that they almost overlap and form a
small acute angle.

In certain extreme scenarios, it becomes crucial
to pay close attention to intermediate quanti-
ties during the simulation process. For instance,
at a vertex, the curvature binormal is defined as
(𝜅𝒃)𝑖 = 2𝒕 𝒊−1×𝒕 𝒊

1+𝒕𝑖−1 ·𝒕𝑖 and can approach nearly infi-
nite values, as depicted in Fig. 8. To prevent the
simulation from blowing up, we opt to clamp
these intermediate quantities to a safe value
when such cases arise.

4.2 Blend with rigid body motion
Physics-based simulations can become unstable when the time step is too large to capture the scale
of the simulated dynamics. For instance, in a fixed time step simulation, if the head capsule moves
too quickly, the simulation can easily become unstable. However, in real-time applications, the
budget for physics is typically limited, making it infeasible to dynamically adjust the time step
size. On the other hand, rigid body motion is unconditionally stable. To enhance robustness and
stability, we propose blending the simulated results with rigid body motion. To achieve this, we set
maximum limits for the head capsule’s displacement and rotation in one fixed time step. When
the capsule’s transformation exceeds these limits, we apply a rigid body motion to all particles to
ensure that the new transformation lies within the prescribed range. Then, we can proceed with
the simulation as usual.
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4.3 Stability test

Fig. 9. Stability test. The hair moves along a randomly
generated trajectory to verify the robustness. We show
that our method remains "unconditionally" stable even
with sudden moves and sharp turnarounds.

We have implemented a stability test to evalu-
ate the effectiveness of the schemes proposed in
the previous subsections. To conduct this test,
we randomly set the translation and rotation of
the head capsule for each time step, which can
be significantly different from their previous
state, and run the simulation for several days
or millions of frames. We conduct this test on
the hair models used in Table 1 before using
them to generate demos. The results of this test
demonstrate that our method is highly robust
for real-time applications. In Fig. 9, we present
a sample trajectory of the head capsule during
the stability test.

5 IMPLEMENTATION AND RESULTS
The hair simulation only explicitly simulates
around 3% of the total number of hair strands,
with the remaining strands being interpolated.
To interpolate these strands, we record the clos-
est three simulated strands in the reference
space for each interpolated strand. During the
simulation, we can compute two sets of results: one using a single strand interpolation scheme and
the other using a multi-strand interpolation scheme. We then blend between these two results to
achieve a realistic final hair simulation. Interested readers can find more information about this
interpolation technique in the work by Yuksel and Tariq [2010].
We have fixed the cell size of the MPM background grid at 1 cm, which is appropriate for the

hair models we use. The segment length of these models varies from 0.6 cm to 1 cm. The strand
length of our short hair model ranges from 3 cm to 25 cm, while the strand length of our long hair
model ranges from 15 cm to 50 cm.

We adopt identical physical parameters of DER and MPM as recorded in Table 2 for the demos of
Fig. 1, Fig. 9, Fig. 13, Fig. 14, and Fig. 15. And detailed statistics of the demos are provided in Table 1.

Fig. 10. Volume preservation. By changing the Young’s
modulus in the MPM stage, we can adjust the overall
volume of the hair.

Volume preservation. In this example, we use
the Drucker-Prager sandmodel [Klár et al. 2016;
Yue et al. 2018] in the MPM stage to demon-
strate how the Young’s modulus affects the abil-
ity to preserve volume.

Comparing sand and liquid model. We com-
pared the sand model with the weakly com-
pressible liquid model [Pradhana et al. 2017] in
theMPM stage. To observe how thesemodels af-
fect the movement of hair strands, we dropped
a group of hair strands onto the ground. As de-
picted in Fig. 11, the liquid model can preserve
volume, but it lacks inter-strand friction, which
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allows hair strands to spread out on the ground. The sand model, on the other hand, is capable of
keeping the strands clustered together, and we can easily adjust the effect by changing the friction
angles.

Fig. 11. Comparing two MPMmodels. Compared with
a fluid model, the sand model provides better flexibility
as it reproduces the inter-strand friction which can be
adjusted by changing the friction angle.

Dancing character. We use the hair model
from the stability test (Sec. 4.3) to simulate the
hair dynamics of a dancing character (Fig. 1).
The time breakdown of this demo is shown in
Table 3. Note that with 1 sub-step, solving the
linear system remains to be the bottleneck of
our pipeline; while with 3 sub-steps, P2G of
MPM becomes the bottleneck.

Sub-stepping scheme. We compared the sim-
ulated results produced with different num-
bers of sub-steps. Although the visual differ-
ences were negligible, we observed that a larger
number of sub-steps improved the performance
of the simulation. The comparison results are
shown in Fig. 13.

Unreal Engine interactive plug-in. Our method has been integrated as a plug-in in Unreal Engine.
Fig. 14 shows that our plug-in can simulate long hair dynamics, and it produces realistic results
while maintaining stability even when the play rate of the underlying skeleton (i.e., the head
capsule) is increased from normal speed to super-high speed.

We also compare our method with Groom, the official hair simulation tool of Unreal Engine, in
the same scenario (Fig. 15). The animated result of our plug-in is much more dynamic and realistic
than the result of Groom, which seems to suffer from a considerable amount of damping and
viscosity.

16.59
176.94

1,723.19

2.14 9.51 71.060.51 0.95 8.75

# systems

0ms

1000ms

2000ms

300 3000 30000

Eigen Naive GPU Optimized GPU

Fig. 12. LDL solver benchmark. The time cost of
each solver is represented on the vertical axis, while
the horizontal axis shows the number of linear systems
ranging from 300 to 30000. It is worth noting that the
dimension of each system is fixed at 400.

LDL solver benchmark. We compare our op-
timized GPU LDL solver discussed in Alg. 3
against a naive GPU LDL solver (i.e., a sim-
ple implementation of Alg. 2) and a CPU LDL
solver from Eigen[Guennebaud et al. 2010] and
plot the results in Fig. 12. The performance of
each solver was evaluated on a modern desk-
top with an i9-9900K CPU and an Nvidia RTX
2080Ti GPU. Our optimized GPU solver per-
forms significantly better than the CPU solver
from Eigen.
For 3000 linear systems (i.e., hair strands in

the context of this paper), we could achieve up
to 186× speed-up compared with the CPU solver and 10× speed-up compared with the naive GPU
version. Note that our optimized implementation scales well with the number of systems, allowing
for even greater speed-up (200×) for 30000 systems.

6 DISCUSSION
We introduce a highly efficient hybrid methodology for simulating character hair, which combines
the DER model for single-strand dynamics with an MPM stage for inter-strand collisions. In the
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Fig. 13. Sub-stepping scheme. Results with different numbers of sub-step are almost identical.

Fig. 14. Different play-rates. As the playback rate increases, our method remains stable and the simulated
results are realistic.

MPM stage, we use SFLIP, a superior integrator, allowing us to produce flowing and waving hair
without Lagrangian collision detection. Our approach includes optimization schemes for efficiently
building and solving the linear system of DER on GPUs, resulting in hair animations of high fidelity
within a limited time budget. Our pipeline enables realistic character hair simulation in real-time
applications. While our demos typically run with 5 milliseconds per frame, further increasing the
FPS is possible by decreasing the number of simulated strands. For example, reducing the number
of strands from 2000 to 500 can improve the FPS without sacrificing quality. We have also proposed
several stability-enhancing schemes for our pipeline.

Limit. While the DER model enables us to simulate complex hair dynamics such as twisting, it
may still be too computationally expensive for many scenarios. Alternatively, constraint-based
methods like Position-Based Dynamics [Müller et al. 2007] and Projective Dynamics [Bouaziz
et al. 2014] can offer better control for artists. Further optimization could be done for increasing
efficiency, but this could also make the pipeline even more complicated and uneasy to adapt to
other scenarios.
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Fig. 15. Comparison with Groom. In this example, our method produces visually better dynamics compared
to Groom. With our method, a bunch of strands settle down slowly when the head capsule suddenly stops
rotating, while with Groom, the deformation of the hair strands appears more rigid.

Future work. Our current method is limited to handling collisions with characters represented by
capsules, and does not resolve interactions between hair and garments. This can result in undesired
hair penetration in scenarios where complex shapes are used for characters or when long hair is in
contact with clothing. To address this issue, we plan to adopt level-set or more accurate boundary
condition modeling methods in future work.
One potential direction is to extend our hybrid method to cloth simulations. However, unlike

strands that can be regarded as individual small systems, cloth is typically treated as a whole. Thus,
a large linear system must be handled, which can be challenging for real-time applications.

Another direction for future work is to adapt our method to other parallel computing platforms
besides CUDA. While we have already transplanted the pipeline to DirectX11 and DirectX12,
utilizing Compute Shader as an alternative to CUDA, future adaptations to OpenGL or Metal may
be necessary to enable hair simulation on mobile devices. Providing support for multiple platforms
will increase the accessibility and versatility of our method.
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